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A theory is constructed for optimum slender three-dimensional bodies having maximum depth of penetration under given 
conditions of entry into a dense medium along the normal to the free surface, given the body length and the maximum cross- 
section area. A condition is found that determines whether it is worth replacing a solid of revolution by an equivalent body of 
three-dimensional shape. The results of the theory are compared for various laws of friction at the contact surface of the body 
with the medium. Coulomb friction and limit plastic friction. 0 2000 Elsevier Science Ltd. All rights reserved. 

Among the fundamental problems of penetration theory are the determination of the range of variation 
of the parameters in which a body of three-dimensional configuration has advantages compared with 
the traditional axially symmetric shapes in regard to the penetration of dense media, in particular with 
respect to penetration depth and maximum overloads and also the determination of the optimum shape 
of such bodies under various isoperimetric conditions. 

Irrespective of the remarkable progress achieved in developing models of media and numerical 
methods (see, e.g. the surveys [l, 2]), theoretical investigation of the motion of non-deformable and 
deformable bodies in dense media is a problem of extraordinary complexity. Effective solution of various 
variational problems involving the intrusion of non-deformable bodies into dense media is possible only 
if the forces acting in the region where the body surface comes into contact with the medium can be 
expressed explicitly in terms of the body shape, the medium characteristics, and so on. However, no 
such relationships are available for three-dimensional bodies; exact solutions have been constructed 
only for the linear problems of slender cyclically symmetric bodies with flat faces entering compres- 
sible fluids and elastic media [3-71. 

Nevertheless, the lack of rigorous formulae for the forces acting on a three-dimensional body, for 
specific models of media and modes of motion, does not exclude the possibility of approximately 
describing such forces using relationships supplied by either approximate or empirical theories. One 
should note that the substantial spread in the values of the parameters describing the properties of dense 
media (type of soil and grade of metal), sometimes reaching as much as 20% or more (for example, 
the cohesion of soil and the plasticity limit), generally precludes any possibility of rigorously specifying 
the body shape that will maximize or minimize the value of some objective function under given 
conditions. In applied problems, therefore, it is important to be able to indicate, in principle, whether 
a penetrating body of axially symmetric or essentially three-dimensional shape should be used in order 
to achieve, say, the maximum penetration depth for given initial data and for parameters of the medium 
varying in a certain range. 

The optimum three-dimensional shape of bodies of some classes with maximum penetration depth 
has been investigated numerically [8], using a local interaction model [9] to describe the stresses acting 
at the contact surface, on the assumption that the shear stresses obey Coulomb’s friction law. Examples 
[8] have shown that replacing a solid of revolution by an equivalent optimum body of three-dimensional 
shape may substantially increase the penetration depth. However, as the variational problem has been 
solved by numerical means (method of local variations [lo]), no suitable criterion has been developed 
for such replacement. It would also be very interesting to see how the solution of the problem differs 
for different models of the shear stress at the body surface. 

Using a model of mixed type to describe the shear stress at the surface of a solid of revolution, 
according to which the stress is determined on the basis of the value of the normal stress, either given 
by Coulomb’s law or equated to the limit plastic friction, Grigoryan [ll] demonstrated the 
extraordinary difficulty of the variational problem of a body of minimum drag [12]. If that model is 
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used to maximize the penetration depth of a three-dimensional body, the problem becomes practically 
unsolvable. In what follows, therefore, this problem will be considered either within the limits of the 
Coulomb friction model or in terms of the limit plastic friction, when it is assumed in the slender-body 
approximation that the optimization problem splits into two: for longitudinal and transverse contours. 

1. M O D E L L I N G  OF THE DRAG FORCE ACTING ON A BODY 
P E N E T R A T I N G  A DENSE M E D I U M  ALONG THE N O R M A L  TO THE 

FREE SURFACE 

Among the experimental publications devoted to the load acting on an intruded body, the paper by 
Vitman and Stepanov [13] may still be singled out even today, both for its methodology and for its results. 
Two of its main results deserve special mention: it establishes a two-term model for the load, containing 
dynamical and strength components, the coefficient of the velocity head in the model is identical with 
the Newtonian coefficient of pressure on a cone. According to the last result, this coefficient, for which 
a simple Newtonian computation [14], depending on the shape of the leading part of the body, is 
available, can be used to compute the penetration depth. 

Within the limits of the elastic-plastic model for the material of the obstacle, and on the assumption 
that when a slender axially symmetric rigid projectile penetrates the material, the latter moves only in 
layers perpendicular to the projectile axis, independently in each layer (the normal sections hypothesis), 
a formula has been obtained [15] for the normal stress ~n at the contact surface, including the velocity 
and deceleration of the body, the thickness, the inclination and curv~tture of the longitudinal contour, 
as well as the characteristics of the medium. Analysis of this solution shows that the apparent additional 
mass m (the mass of material of the obstacle included in the volume of the leading part, over which 
the body establishes contact with the medium in a cavitation scheme of flow, or in the volume of the 
body) occurs in the formula for the penetration depth through a term added to one, whose order of 

2 magnitude is determined by the expression (rn/~_t (where M is the mass of the body and 2t is its relative 
thickness). In the slender-body approximation (t 2 ~ 1) this term may be neglected, so that the retardation 
will not exert a marked influence on the resistance of the body. 

If the resistance of the body is computed with allowance for the Coulomb friction force as well, the 
contribution of the term containing the retardation of the body in the formula for on is represented by 
two terms added to one: 1 + O(t 2) + O(i.tt) (where ~t is the coefficient of dry friction). This gives grounds 
for the assumption that, for realistic ~t values, the calculated results remain satisfactorily accurate even if 
one drops the term depending on the retardation in the formula for the normal stress at the surface of a 
slender body. This conclusion remains true in the case of constant friction at the contact surface (the model 
of limit plastic friction). The validity of these estimates is also confirmed by experimental data [13]. 

Thus, on the basis of the previously obtained solution [15] and the results of its analysis, the formula 
for the normal stress at the contact surface of the body, neglecting the curvature of the longitudinal 
contour, may be written as follows: 

o. =lpu2[ln(l + b)- l-~](n,x)2 +'t[l + ln(l + b)]> O (1.1) 

where p is the density of the material of the obstacle, u is the body velocity, n is the unit vector normal 
to the body surface, x is the unit vector of the x axis, which has its origin at the body tip, coincides with 
the body axis and is directed against the motion ((n, x) < 0) and b = E/[2x(1 + v)], where E, v and z 
are, respectively, Young's modulus, Poisson's ratio and the yield point of the material of the obstacle. 

Results have been obtained for rigid axially symmetric bodies penetrating into soils modelled by a 
plastically compressible medium [16, 17]. Omitting the terms involving the retardation of the body and 
the curvature of the longitudinal contour--as in the case of collision with a metallic obstacle [15]--the 
formula for an can be written as 

 u2[ 
c~,~ = 2(1"- ~t)b I el-~' - 1 + 2(1 - ~')b I e -v + 

+ Xo (E-V_l)+pae-V >0 
2~o 

_ 9 ,  g o  , E = l _ b l  ' 
bj -~-I  "Y= I+P-o 

( l~y)  (E_.t _ l)](n,x)2 + 

x 0 = 2k cos O, I.t 0 = sin O 

(1.2) 
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where Pl is the density of the soil behind the shock wave, k and 0 are the coefficient of cohesion and 
angle of internal friction of the soil and Pa is the pressure ahead of the shock wave. 

Note that formulae (1.1) and (1.2) for a,  and the empirical formula described above for the load on 
the intruded body [13] are identical in nature. 

We will now consider the reason that the terms involving the curvature of the longitudinal contour 
of the body were omitted in (1.1) and (1.2). Allowance for these terms would have made it necessary 
to introduce the natural restriction ¢r n ~< 0, which is akin to the condition, required when the 
Newton-Busemann formula is used, that the pressure be non-negative [18]. This restriction leads 
to the appearance of arcs y(x) of the outer extremum (~, = 0), which, according to previous results 
[15, 17], are solutions of the differential equation 

Aoy '2 + Byy" + C = 0 (1.3) 

where the coefficientsA0 and C are determined by (1.1) and (1.2), and the coefficient B has one of the 
following forms 

B=lpu21n(i+b), B= pu2 (t~-~-l) (1.4) 
2 2bit 

depending on whether the medium is elastic-plastic or plastically compressible. 
The general solution of Eq. (1.3) may be written as 

E z 2 /,. x=-2e f(d2t-zZ)e-'/2dz+d2, e = - - ,  =d?-y' (1.5) 
2A 0 

(dj and dz are arbitrary constants). An outer extremum arc (1.5) may be drawn through the point 
(0, 0)--the body tip---and the end point (L,y(L)) of the contour. In that case, putting e = 1/2 to simplify 
matters (which amounts, e.g., in elastic-plastic media (1.1), (1.4) to assuming that the logarithmic term 
in square brackets in the expression forA0 makes the major contribution), we can write solution (1.5) 
a s  

U~ d= 1 f ~  ( l -~ ) y(L , (1.6) x =  ( e - a / ~ - y 2 ) ,  2 ~ a 0 \  + t 2 L, t=  L 

where L is the body length. It is obvious that for solution (1.6) to be meaningful it will suffice that 
Aot2/C > 1. Obviously, a body having the shape of (1.5) or (1.6) (the front part of an ellipsoid of 
revolution), which is based on the equation c~, = 0, has zero drag. 

The solution just demonstrated--the outer extremum arc--corresponds to the formation of a cavity. 
It cannot be considered suitable, not so much because the reason for the ~formation of a cavity is 
"indeterminate", but because under these conditions the assumptions adopted previously [15, 17] when 
the problems were formulated are no longer valid. 

Thus, expressions (1.1) and (1.2) for ¢~, must be considered as approximations to the solutions of 
[15, 17], valid when the curvature of the longitudinal contour of the body is small, and also as a means 
of deriving theoretical estimates of the coefficients in the two-term local interaction model. A similar 
possibility is offered by the results of [19, 20]. 

For further treatment, we write the two-term models (1.1) and (1.2) for the normal pressure at the 
body surface, which contain dynamical and strength terms, in a generalized form 

~,, = Au2(n, x) 2 + C (1.7) 

We will treat the coefficients A and C as constant parameters of the model, to be determined either 
theoretically or experimentally. 

Since the body velocity in the half-space occupied by the dense medium depends on the initial stage 
of intrusion, up to the time when contact with the medium takes place over the entire body surface 
with the normal directed towards the flow, we must evaluate the influence of this stage on the decrease 
in the initial velocity u0. 

In the case of the Coulomb model of friction, which enables one to obtain a maximum estimate of 
the required quantity, the force fc per unit area of the body surface and the force D resisting its 
penetration may be written as follows: 
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% = -on (n - ~'r), (a', x) =1 [n, x] I (1.8) 

o = II (re, x)dS = -JI  °n[(n, x) - It(x, x)]dS 
Sk Sk 

where Se is contact surface between the body and the medium. 
Let us estimate the velocity drop Au of an axially symmetric body with conical leading part during 

the initial stage of penetration into a half-plane occupied by a dense medium along the normal to the 
free surface. If relations (1.7) and (1.8) are used and it is assumed that (n, x) = -x, (z, x) = 1 (for slender 
bodies), the equation of motion of the body takes the form 

Mh"=-h2(At2h "2 + C ) ( I + ~ ) - ~ ,  h'=u (1.9) 

where h is the actual value of the penetration depth, Sm is the maximum cross-sectional area (the 
bottom section) of the body. Integrating Eq. (1.9) with initial conditions h(0) = 0, h'(0) = u0, we find 
that Au/uo ~ [u0 - h'(L)]/Uo ~ 1 if 

mAt2 ( -~)/+-~C2.21~11 (1.10) 
Mp 1 +  Auot ) 

To satisfy inequality (1.10), it is sufficient that 

C/(Au2ot2)~ O(1) (1.11) 

SinceA and C occur in (1.11) in the form of a quotient, it follows from (1.1), (1.2) that to estimate 
its order of magnitude we need only note that A - p and C - z or z0. Since p - 1 0  4 kg/m 3 and x 
(102-103) MPa for metallic media, and p - 103 kg/m 3 and to - 10 -1 MPa for soils, it follows from (1.11) 
that the velocity drop at the initial stage of incomplete imbedding of the body (or its leading part) in 
the medium may be neglected without significant loss of accuracy, provided the initial velocity of entry 
satisfies the inequality Uo > (102-105/2)# m/s (for metals) or Uo > lO/t m/s (for soils). 

This result is important for the subsequent definition of the depth-of-penetration functional, since 
it enables one, under the conditions specified, to ignore the process of incomplete embedding of the 
body (or its leading part), assuming that while the body is decelerating from a velocity Uo, contact with 
the medium takes place over its entire surface with the normal pointing in the direction of motion. Thus, 
if condition (1.11) holds, the expression for the drag force (1.8) may be written as 

D = -J~ o ,  [(n, x) - ~t(a-, x)] as (1.12) 
s 

where S is the total lateral area of the body, with the normal pointing in the direction of the 
motion. 

Although formula (1.12) was derived for solids of revolution and there are no theoretical grounds 
for carrying it over to the motion of three-dimensional bodies in a dense medium, we will assume 
that the local interaction model remains valid in that case too. The admissibility of this assumption may 
be verified by comparing the penetration depth H in sandy soil for bodies of star-shaped cross- 
section (Fig. 1) relative to that of solids of revolution equivalent in mass and cross-sectional areas at 
various distances from the tip [21], determined experimentally, with the results of computations using 
formulae (1.2), (1.7) and (1.12). Omitting the details, we write down the expression for the ratio H of 
the depths of penetration of a fiat-faced star-shaped body and an equivalent axially symmetric 
body 

H = w? (1 + w)ln(1 + w~ / w~) (1.13) 
(w + w I )In(1 + w02) 

w 2 = (1 + a? )a 2, a w = ctg n_. _ n___n._ 
n na 2 

g~ =Sm w = g_.L, 
•L 2 '  l.t 

I I  2 
= gk 

' a2 \ ~ o J  

Au~ 2 w20 = ~ g~ 
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where gk is the radius of the maximum cross-section of an equivalent solid of revolution relative to the 
length of the leading part and go is the minimum dimensionless radius of the maximum cross-section 
of a star-shaped body (Fig. 1) consisting of n symmetric cycles. As can be seen, the number of cycles n 
and the parameter of the cross-sectional shape a2 affect H through the parameter wl. Ifgk, u0, rt and 
the parameters of the medium are given, then, by varying wl, one can determine the influence of the 
shape of the transverse contour of a star-shaped body on the relative penetration depth H. 

Figure 1 plots H against tl = lgw0 for Wl = 1.5 and 2 (the dashed and solid curves, respectively) and 
for wl = 1/75 and 2 (the lower and upper pair of curves, respectively). It should be noted that H is a 
non-monotonic function of w and w~ for t I < 0.5, and also that the relative penetration depth increases 
as t increases. We also note that when there is an increase in the initial velocity u0 for which tl increases, 
the value of H ceases to depend on the quotient of logarithmic terms in (1.13), being determined solely 
by the body geometry and the dry friction coefficient la in Coulomb's law. 

It was assumed in the computations that the sandy soil is sand with a disturbed structure, having the 
following characteristics: p = 1600 kg/m 3, e = 0.37, Po = 0.5 and To = 5 kPa. The backpressurepa varied 
in the range (1-3) × 10 -1 MPa. The dry friction coefficient was ta = 0.2. The experimental values of H 
are represented by segments of straight lines in the tl-intervals corresponding to the indicated variation 
ofp~. The arrow points in the direction of increasingpa. The segments 1, 2 and 3 correspond to values 
of u0 = 520, 310 and 200 m/s. Inequality (1.11) is satisfied in all cases. 

Comparison of the experimental and computed H values indicates quite satisfactory qualitative and 
quantitative agreement, particularly at high initial entry velocities, irrespective of the large range within 
which p~ varies. The poor agreement between the theoretical and experimental data at u0 = 200 m/s 
may be explained by the fact that at velocities u0 less than the propagation velocity of perturbations in 
the medium, the theory of [17] may no longer be regarded as correct. At such entry velocities one has 
to use other---e.g, empirical---coefficientsA and C in formula (17) for the pressure at the contact surface, 
defined over the necessary range of velocities u0. 

Summarizing our analysis of the applicability of the two-term local interaction model (1.7) for 
computing the drag force (1.12) of three-dimensional bodies, we may conclude that it yields computed 
values of H in excellent agreement with experimental data; it may be used to optimize the shape of 
three-dimensional bodies penetrating dense media. 

2. OPTIMUM SHAPES OF BODIES WHEN 
THE C O U L O M B  F R I C T I O N  LAW IS USED 

Let us assume that all the conditions considered in Section 1 are met. We will consider the variational 
problem of the shape of a slender body with maximum penetration depth, given its length (the length 
of the leading part) L and the maximum cross-sectional area Sin, in the class of surfaces with similar 
cross-sections along the x axis, when an analytical solution can be found 
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f -  p - q0(x) R(0) = 0 (2.1) 

where (x, p, 0) are cylindrical coordinates, and cp(x) and R(0) are the longitudinal and transverse contours 
of the body. 

Expression (1.12) for the drag of the body when (2.1) is the equation of its surface is conveniently 
written as 

D(u) = DI u2 + D 2 (2.2) 

where Dl and D2 may be expressed in the following two forms 

L L 

/91 = I(7,(0+ Vz)(02tpdx, 02 = 73Jq0dx+ CSm (2.3) 
0 0 

71 = A J4,  72 = ['IAJ3, Y3 = ['I'CJI 

S,, = q°2(L)J2; Jn = J Rn~2-nd0' n=1,2,3,4; ~ =  R2 (2.4) 
0 

2~ 2r~ 
D I = ~ (k t R~ -I + k 2)R3~ -Id0, D 2 = k 3 ~ RO-ldO + CS m (2.5) 

0 0 

L L L 
k 1 = a ~ q ~ 3 d x ,  k 2 = [.tA~qo(02dx, k 3 = [ . tCJqodx 

0 0 0 

(the dot denotes differentiation with respect to the argument). This representation of the drag com- 
ponents, depending on the properties of the medium and the shape of the body, justifies splitting the 
problem of optimizing the body shape into two: determination of the longitudinal and transverse 
contours, since the variations ~0(x) and R(0) are independent. 

Integrating the equation of motion of the body, we find an expression for the penetration depth 

h= M In D°~, Do =D(u0) (2.6) 
2D 1 /)2 

The depth-of-penetration functional h is a functional of non-additive type. Equating its first variation 
to zero and writing out this condition and the Legendre condition in generalized form, we have 

8 D O + f 8  D2 = 0 (2.7) 

82D0 +f82D2 ~ 0 (2.8) 

Here 

lol(hD2)-I  DolD 2 -1-1n(DolD2) 
f =  lo l(hDo)_ l =- -1-_ D2 / Do-_ I--~o / D2), Io = Mu2o / 2 (2.9) 

where I0 denotes the initial kinetic energy of the body. In this formulation of the penetration problem, 
all the body's kinetic energy is used up in the work done by the drag force (2.2) over the path h, the 
work of the constant component D2 over that path is hD2 < Io, and the work of the entire initial drag 
force is hDo > Io. Using these inequalities, we deduce from (2.9) that f > 0. 

It follows immediately from expression (2.7) for the first variation of the functional h that the shape 
of a body of minimum resistance, determined at the initial stage of penetration (8/)0 = 0), is not optimum 
in the sense of maximizing the penetration depth. 

Let us determine the optimum longitudinal contour of the body. Since the basic functions F0 and F 2 
of the functionals Do and D2 (see (2.2) and (2.3)) do not explicitly contain the independent variable x, 
Euler's equation, which follows from (2.7), admits of a first integral 

~(Fo+fF2 ) ] I (0 (F 0 + f F  2) =[2(03+d~ 2 - ( l+ f )d l ]q0=c  1 (2.10) 
71 2(0 

d=7__.K, dl= 73 
Yl "hu2o 
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where Cl is an arbitrary constant. Without loss of generality, we may assume that the function q0(x) 
satisfied the following boundary conditions at the end points 

q0(0) = 0, qo(L) = . ~ / r t  (2.11) 

Without dwelling on the details, we note that the constant on the right of Eq. (2.10) is non-negative, 
provided one imposes the natural restriction q0/> 0 on the shape of the longitudinal contour and takes 
boundary conditions (2.11) into account: cl /> 0. 

If c~ > 0, the extremal is described by the relations 

tO 
x = S zl/S[(1 + zl )1/3 + (1 - zl )l/3]dq0 (2.12) 

0 

Z = q0 , ZI= 1-  Z 
c t + (1 + f)dt~ p 

and at the body tip it has the asymptotic form (32Q/27)t/4x3/4. 
If ci = 0, which also corresponds to the case in which the length of the body (of its leading part) L 

is not given, Eq. (2.10) admits of arcs of an extremal of two types, satisfying the Weierstrass-Erdmann 
condition at a corner point-- the straight lines cp = 0 and q0 = z~x, where x~ is half the relative thickness 
of a cone of length L1, which is defined by the relations 

I 3 2 / 1/3 
zl = qo,d~/3, 2tp~ + d2qo 2 - (1 + f )  = O, d 2 - ]t2u----~° (2.13) 

- \ 7 2 V 3 j  

Thus, if the length L is given and t ~ ~1, the optimum body is of length L1 with a conical longitudinal 
contour, since a needle----~ = 0 over the intervalx e [0, L -L1]--has  no physical meaning and is assumed 
to possess a longitudinal contour only in order to satisfy conditions (2.11). 

We note that it is convenient to begin the search for the shape of a body with maximum penetration 
depth with the assumption that the longitudinal contour is conical, cp = zjx. Having computed k i and 
defined an optimum transverse contour R(0), one computes Yi and then ~1 from (2.13). If L I ~< L, when 
the length L is given, the optimum body is thus found. If L1 ~< L, when the length L is given, the optimum 
body is thus found. If L1 > L, one uses expression (2.12) for the longitudinal contour. 

To construct an optimum transverse contour, we introduce a new variable 

r = kfR(O), k f  = (klu 2/k3) I /3  (2.14) 

Formulae (2.2) for the components of the drag of the body may be rewritten in the form 

I + O, ug = ~  I ( r~; '+a)r3~ 'dO,  a =  , ~l  = 1 - -  (2.15) 
Kf 0 kl r2 

k 2~ 
D2 = "3 I r~ld0 + CS,, (2.16) 

kf 0 

In the case of a conical longitudinal contour, we have 

r_ 2 ,,3 
kf = t[ ttUo | , a = 

gc ) (2.17) 

We have to find a function r(0) satisfying relations (2.7) and (2.8), isoperimetric condition (2.4), which 
in view of (2.14) becomes 

27g 
2rtk} = Sr2dO (2.18) 

0 

and the condition that the transverse contour is closed: r(0) = r(2n). Formula (2.7), together with 
isoperimetric condition (2.18), is equivalent to the relation 
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2n 27t 
8 J(F 0 + ~.r2)dO+f8 ~ F2dO = 0 (2.19) 

0 0 

where k is an indefinite constant--a Lagrange multiplier; F0 and F2, as in (2.10), are the basic functions 
of the functionals Do and D2. 

The Euler equation obtained from (2.19) has a first integral, which we write in parametric form 

r 2 = c  2+Cx[20t 3+a0c 2 - ( l + f ) ]  c 2 =const, c~=---~-r, oct< (2.20) r 
3~ 2 + 2a~ + L 

C/,dr 2 
dO = -+ 

2r2.vlTgr2 _ ~ 2 

The condition at the corner points becomes 

A[c2]~O+A[ 3(F° +~r2 + fF2)l~r 0 j = (2.21) 

Since the positions of the corner points are not given, it follows from (2.21) that A[c2] = 0, and thus 
all arcs of the extremal have the same value of the constant c2. Then, if r(0) is a solution of Eqs (2.20), 
so are r(-0) and r(0 + const), since r occurs in (2.20) to an even power only, and so the transverse 
contour may be made up of an integral number n of symmetric cycles. Under those conditions, the 
condition that the transverse contour be closed will be satisfied. 

By (2.8), (2.14)-(2.16) and (2.19)-(2.20), we can write the Legendre condition in the form 

r2  t> 1 [8Or 3 + 3 a ~  2 - (1 + f)] (2.22) 
2(3ot + a) 

It follows from (2.22) that the optimum body will either be a solid of revolution, or the transverse 
contour an arc of a circle (an arc of zero inclination,/. = 0), if r <~ cg, where al is the only positive root 
of the equation 

2o~ 3 + aoc 2 - (1 +f) = 0 (2.23) 

The restriction on r thus obtained is very strong, and, as already shown in [9], the problem must be 
reformulated by introducing a differential inequality/. 1> 0 and taking into account our previous 
conclusion that the transverse contour consists of n symmetric cycles. The isoperimetric condition (2.18) 
becomes 

7tin 2 
rtk2 = ~ r dO (2.24) 
rt - 0 

The transversality condition at the ends of the interval [0, •/2] may be written as 

q~/. 
3(F° +~'r2 +)h(/. - 132)+ f F 2 ) 3 / "  ~r (2.25) 
' - ] 0  = 0 

where )~l is an indefinite variable Lagrange multiplier and 13 is a function of the variable 0 satisfying 
the differential equation/" - 132 = 0. 

Analysis of the necessary conditions for an extremum in the problem of the transverse contour of a 
body with maximum penetration depth shows that the only difference between them and the similar 
conditions in the problem of the transverse contour of a body with minimum drag [9] is the presence 
of the parameter f  > 0. Hence the proofs of the propositions formulated below are similar to those of 
the corresponding propositions in [9]. 

Lemma 1. The extremal of a half-cycle of the transverse contour cannot consist of two regular arcs 
(2.20) separated by an arc of zero inclination if the maximum radius rf of the transverse contour is not 
given. 
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Corollaries. 1. If the parameter of isometric condition (2.24) satisfies the inequality kf < al and no 
additional conditions are imposed at the ends of the extremal, the optimum transverse contour is a 
circle of radius kf 

2. If the extremal inside a half-cycle of the transverse contour contains an arc of zero inclination, it 
cannot contain other arcs of non-zero inclination. 

3. If the maximum radius rf of the transverse contour is given, the extremal may contain an arc of 
zero inclination inside a half-cycle. 

Lemma 2. An extremal of a half-cycle of the transverse contour cannot contain, together with a regular 
arc (2.20) any arc of zero inclination of radius rf Z- a1 or ri 2 al, if r- or r; (the minimum radius of the 
transverse contour) are not given. 

Theorem. If kf 3 al, when there are no additional restrictions on the extremal of the transverse contour 
over the interval [0, n/n], it may consist solely of an arc of a circle of radius al, or of a regular arc a = 
al, or both; the existence of each of these structures of an extremal is determined by isoperimetric 
condition (2.24). 

We will call a transverse contour constructed from such arcs of the extremal absolutely optimum. By 
(2.20) the regular arc a = al is a segment of the straight line whose equation is 

!(e> = cx,/c0s(0 + y) (2.26) 

It follows from (2.26) that the regular arc touches the circle of radius al at the point 0 = -y. If y = 
-Cl,, where 0 < 0, < n/n, then the arc of zero inclination ri = a1 connects to the regular arc (2.26) without 
any discontinuity in the derivative. 

Using isoperimetric condition (2.24) and Eq. (2.26) we find that 

(ki’ =[e, +tg(~-e,)]a (2.27) 

By (2.27), the extremal will be an arc of the circle r = al (0, = x/n) if kf = al and a combination of 
an arc of zero inclination and a regular arc if 

( 1 kf 

2 

<S,‘c 

a1 rc n 

But if 

(2.28) 

(2.29) 

the extremal will consist solely of a regular arc (2.26), where y is the angle between the normal to the 
straight line extending the regular arc and the axis of the polar coordinate system; this angle is determined 
from the relation 

(y’=$g(;+Y)-QY] (2.30) 

Thus, the configuration of an absolutely optimum transverse contour is determined by the value 
of one parameter kjal, which contains the characteristics of the medium, the entry velocity and 
the shape of the longitudinal contour. By the theorem, if this parameter exceeds unity one must 
consider whether it is worth replacing a solid of revolution with a body of an equivalent three- 
dimensional shape, whose penetration depth is determined through the following corollaries of the 
theorem. 

Corollaries. 1. The penetration depth of a body having an absolutely optimum transverse contour does 
not depend on the number of cycles n. 

In that case, D1 and Dz, which determine h (2.6), have the form 
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D,u~ 21tkyk3(l+f-o~), D 2 - 2~k k +CS,, (2.31) 
= O~ 1 --  0~-"-~ "f 3 

2. The penetration depth of a body having a conical longitudinal contour and an absolutely optimum 
transverse contour does not depend on the relative thickness of the body. 

Carrying out the necessary operations using relations (2.17), (2.23) and (2.31), we obtain 

Dlu~) = aa I (o h + a)CS,,,, D O / D 2 = 1 + ao~2t (2.32) 

h =  M ln(l+ao~l 2) 
2S,, Acq (cq +a)  

Note that, by (2.17), (2.23) and (2.32), al  is a function of the parameter a only, and hence it depends 
only on the characteristics of the medium, the entry velocity and the dry friction coefficient. A plot of 
Ctl(a) is shown in Fig. 2. As an example, the graph shows points 1 and 2 plotted with a and oh values 
corresponding to penetration into soil (u0 = 600 m/s, p = 1530 kg/m 3, bl = 0.7, O = 20 °, k = 0.05 MPa 
and Pa = 0.3 MPa) and into metal (u0 = 2000 m/s, p = 7600 kg/m 3, E = 0.05 GPa, v = 0.3 and x = 1 
GPa), respectively, with dry friction coefficient ~t = 0.02. 

In the case of a conical longitudinal contour, relations (2.13) are identically true, while by (2.23), 
(2.27) and (2.30) there is a one-to-one correspondence between t and the shape of an absolutely optimum 
transverse contour with an arbitrary number of cycles n. 

Thus, there is a non-denumerable set of absolutely optimum bodies with t > B(~l/a which have the 
same penetration depth h (2.32), conical longitudinal contour and absolutely optimum traverse contour. 
But if t <~ p(~l/a, the optimum body is a circular cone with penetration depth 

hk = M ln(l + Aunt 2 / C) (2.33) 
2SmAt(t + B) 

Figure 3 shows the computed penetration depths h (2.32) of an absolutely optimum body, in units 
of the penetration depth hk (2.33) of an equivalent cone; the quotient H = h/hk is plotted against t (the 
solid curves). Curves 1 and 2 correspond to penetration into soil and metal at velocities u0 = 600 m/s 
and u0 = 2000 m/s, respectively. The segments A B  and A C  on the straight line H = 1 correspond to t 
intervals where the optimum body is a circular cone. Plotted there are computed data of the ratio of 
the maximum to the minimum radii of an absolutely optimum transverse contour R1 = R(x/n)/R(O) 
(the dashed curves). It can be seen that the parameter R1 is very large in the case of media with low 
resistance to deformation (soil). Since such a configuration of the transverse contour may be of no 
practical interest, when kf > o h one must look for an optimum transverse contour with restrictions. 
One such restriction, in particular, is to specify a minimum radius ri > or1. 
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Fig. 2. Fig. 3. 
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The system of relations that in this case defines the parameters of the point of contact of an optimum 
transverse contour consisting of an arc of zero inclination r = r,- over the interval 0 ~ [0, 0c] and a concave 
regular arc (2.20) over the interval 0 ~ [0c, re~n] has the form 

C2 _ ~/}2 = ri 4 --I- at} 3 + (1 + f)~ (2.34) 

c 2 - ~r/2 = a~ (3r/2 - 2a 2) + a a  c (2ri 2 - ot2 ) + (1 + f)otc 

a / O ot dr  2 
r t = e c +  J r2dOt, 0 = 2  r-.v_ot 2 ~ / r  ~ dOt n ~c 

K2 = n O, + d OdOt 

where K = ri/k / = R(0) ~< 1 is a parameter representing the shape of the transverse contour; r i, n and 
kfare given, while c2, ~., ~tc and 0c are unknown quantities; af = al, as follows from transversality condition 
(2.25) [9]; according to (2.9), (2.15), (2.16) and (2.20), f depends on both the given and the unknown 
quantities. A condition for the realization of this structure of the extremal is 

Otl/ky ~< K ~< 1 (2.35) 

When 0~ = 0, when the composite extremal degenerates into a regular arc, Eqs (2.34) impose a 
restriction on the defining parameters. Passage from one structure of the extremal to another may be 
specified by using (2.28) and (2.29). If inequality (2.28) is true and K, while decreasing, becomes equal 
to oh/k / (see (2.35)), one has the case of an absolutely optimum transverse contour consisting of an arc 
of zero inclination and a regular arc--a straight-line segment. If inequality (2.29) holds and K = K, 
oq/(kfcos ),) < 1, with K, defined in accordance with Eq. (2.26), one again has the case of an absolutely 
optimum extremal--a straight-line segment. But if the defining parameters of the problem are such as 
to satisfy the inequalities (2.28) and K < oq/kf, or the inequalities (2.29) and K < Kn, then the extremal 
is convex. 

As an example, Fig. 4 shows curves in the plane of the parameters R0 = R(0) and t, separating regions 
with qualitatively different shapes of the extremal in a half-cycle of the transverse contour (hatched), 
in the case of a body with conical longitudinal contour and n = 4 cycles penetrating soil at velocity 
u0 = 600 m/s (curves 1) and metal at u0 = 2000 m/s (curves 2). The segments M E  of the straight line 
R0 = 1 correspond to a circular cone, which is an optimum body at the corresponding t values. If E is 
the point on curves 2 (metal) and, in particular, curves 1 (soil) at which the transition to bodies of three- 
dimensional shape occurs, then the ordinate of this point is small; the same has been observed in the 
problem of bodies of minimum drag [9]. The segments of hyperbolae E G  correspond to an absolutely 
optimum contour consisting of the arc r = % and a straight-line segment. Curves 1 and 2, beginning 
at points G, correspond to an absolutely optimum contour--a straight-line segment (the left curves)-- 
and to transition from an extremal consisting of a concave regular curve to a combination of an arc of 
zero inclination and a concave regular arc (the right curves). 

3. O P T I M U M  SHAPES OF BODI ES  WHEN THE S U R F A C E  
F R I C T I O N  EQUALS THE M A X I M U M  S H E A R I N G  STRESS 

OF THE M A T E R I A L  OF THE M E D I U M  

The previous analysis (Section 2) of the problem of the shape of a three-dimensional body with 
maximum penetration depth, on the assumption that the Coulomb friction law holds at the surface of 
contact of the body with the medium, carries over without essential changes to the case of a constant 
shear stress on the surface, equal to the plastic shearing stress of the material of the medium. We will 
indicate the main differences in the solution of the variational problem that arise when use is made of 
a model with constant shear stress % on the contact surface. 

In this case, the drag of the body may be written in the form 

D = JJ [ -o  n (n, x) + crs ('r, x)]dS 
S 

Relations (2.3), (2.5), (2.10), (2.13), (2.15)-(2.17), (2.20), (2.22) and (2.23) are therefore considered 
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with 

~2 = k2  = d = d z  = a = 0 

2~ L 

Y3 = ° s  S R~dO, k 3 =OsS q~dx 
0 0 

(3.1) 

The formulae for YI (2.3) and kl (2.5) remain unchanged. 
Since d = d2 = 0 (3.1), the formula for the optimum longitudinal contour is simplified when cj > 0 

(2.12) 

x =  ~ dqo 
o \ q  +dt~P) 

and when cl = 0 (2.13) the relative thickness of the optimum cone is defined by an explicit expression 

x I =[d I ( l + f ) / 2 ]  ~ 

Since a = 0 (3.1), we deduce directly from (2.23) that 

oq = [(I + f )  / 21 ~ (3.2) 

All statements concerning the structure of an extremal of the transverse contour in the model assuming 
Coulomb friction at the contact surface (Section 2) remain valid in this case too. Relations (2.31) retain 
the same form (Corollary 2 of the theorem), but relations (2.32) become 

r .  2",~ 
DI u°  2 2 / ~ u 0 / - -  

go~ o,,kf ( Au~ ] ~ 
Do = 1 + ~ ,  g " k f = t  
D 2 g + S t = -"-~t ' \--~--.~. ) 

(3.3) 

By the expression for Do~D2 (3.3), as well as (2.9) and (3.2), in the case of bodies with conical longi- 
tudinal contour and absolutely optimum transverse contour, the parameter cq occurring in the relation 
kf = etl determining the transition from solids of revolution to bodies of three-dimensional shape depends 
solely on the parameter g. 
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By (3.1), relations (2.34) for the optimum transverse contour, consisting of arcs of zero inclination 
if a given radius and regular arcs, are also simplified. 

The solid and dashed curves 3 in Fig. 3 represent the relative values of the penetration depth H(t) 
of an absolutely optimum body and particular maximum and minimum dimensions R t(t) of its transverse 
contour (for n = 4 cycles), penetrating soil at a velocity u0 = 600 m/s on the assumption that ~s = 0.3 
MPa. As before, the segment AD of the straight line H = 1 corresponds to the range of t over which, 
under the conditions stipulated, the optimum body is a cone. In Fig. 4, curves 3, as in the case of Coulomb 
friction, show the domains of existence and boundaries of different structures of the transverse contour 
of the optimum body, consisting of four cycles, with linear longitudinal contour, for penetration of soil. 
The data presented indicate that the model of constant friction at the contact surface implies no 
qualitative modifications of the results obtained when the analogous variational problem is solved using 
the dry friction model. 

4. EXAMPLES OF COMPUTATIONS 

Figure 5 represents results of a computation of the relative penetration depth H for a conical body 
with n = 4 cycles, for soil (u0 = 600 m/s, curves 1) and metal (u0 = 2000 m/s, curves 2), obtained using 
the Coulomb friction model. Results are also shown for the constant limit plastic friction model (soil, 
curves 3). The results are shown for t = 1/3, plotted against the dimensionless radius tRo of the transverse 
contour. The solid curves correspond to the optimum transverse contour, the dashed curves correspond 
to an equivalent fiat-faced body and the dash-dot line is the straight line H = 1. The maximum possible 
gain in penetration depth achieved by changing to a body of three-dimensional shape from an equivalent 
circular cone with t = 1/3, for given media and entry velocities is indicated by the points at which the 
curves touch one another, where the flat-faced body is a body with absolutely optimum transverse 
contour. 

Figure 6 presents data relating to the quantity R?l(tRo) for conical bodies with t = 1/3 consisting of 
four cycles, with optimum transverse contour, as given by the Coulomb friction model (curve 1, 
~t = 0.2) and the limit plastic friction model (curve 2, as = 0.3 Mpa) at the surface of contact, for 
penetration of soil (u0 = 600 m/s). Curve 3 corresponds to equivalent fiat-faced bodies. The abscissae 
of the points of intersection of the latter with curves 1 and 2 coincide with those of the points of 
contact of the solid and dashed curves 1 and 3 in Fig. 5. 

We also show in Fig. 6, as an example, the contours of the cross-sections of equivalent bodies in one 
cycle (n = 4): a circular cone (the arc of a circle, t = 1/3), of optimum bodies with linear longitudinal 
contour penetrating soil (contour 1 for the Coulomb friction model and contour 2 for the constant plastic 
friction model), and of a fiat-faced body with tRo = 0.3. The relative penetration depth H for bodies 
with contours 1 and 2 is 1.47 and 1.43, respectively; for a fiat-faced body, in the dry friction and plastic 
friction models, it is 1.14 and 1.15, respectively. The indicated H values were obtained by computing 
the penetration depth of an equivalent cone using the appropriate friction models. 
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In conclusion, it must be noted that the computed results presented in this and the previous sections 
for the penetration depth and other quantities, attributed to various optimum bodies, should not be 
seen as corresponding to any actual medium. The values assumed for the defining parameters in (1.1) 
and (1.2), as well as cs, resemble the characteristic values for soils and metals only in order of magnitude. 
Accordingly, the computed data only demonstrate the advantage of three-dimensional shapes compared 
with the equivalent solids of revolution, as regards penetration depth in media with essentially distinct 
characteristics, as well as the possibilities of the theory. The penetration depths of optimum three- 
dimensional bodies, obtained in the context of the different friction models (Sections 2 and 3), could 
be compared only as a result of numerical calculations of penetration for bodies with given geometry, 
using a mixed model of friction at the surface of contact of the body with the medium [11, 12]. 
computation of H for an optimum body penetrating metal at a velocity u0 = 2000 m/s (Fig. 5, curves 

2) should also be treated with a critical eye. At such velocities, the assumption that the body is not 
deformed cannot be taken for granted. Also, taking into consideration the very slight increase in 
penetration depth for an absolutely optimum body compared with an equivalent cone (Fig. 3, solid 
curve 2), one may therefore conclude that in the case of penetration into metal the transition from a 
solid of revolution to an equivalent optimum body of three-dimensional shape will most likely not yield 
any substantial change in the penetration depth• For penetration into soil, however, the transition may 
yield a significant increase in penetration depth in the approximate domain of parameter  values (Fig. 
5, curves 1, 3). 

This research was supported financially by the Center of Basic Natural Sciences at the Saint Petersburg 
State University. 
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